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Abstract  

Firms have been proactively holding data science competitions via online contest platforms to look 

for innovative solutions from the crowd. When firms are designing such competitions, a key question is: 

What should be a better contest design to motivate contestants to exert more effort? We model two 

commonly observed contest structures (one-stage and two-stage) and two widely adopted prize structures 

(high-spread and low-spread). We employ economic experiments to examine how contest design affects 

contestants’ effort level. The results reject the base model with rationality assumption. We find that 

contestants exert significantly more effort in both the first stage and the second stage of the two-stage 

contest. Moreover, it is better to assign most prizes to the winner in the two-stage contest while it does not 

matter in one-stage. To explain the empirical regularities, we develop a behavioral economics model that 

captures contestants’ psychological aversion to falling behind and continuous exertion of effort. Our 

findings demonstrate that it is important for contest organizers to account for the non-pecuniary factors that 

can influence contestants’ behavior in designing a competition. 
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1. Introduction 

In recent years, firms have been proactively utilizing open competitions via online contest 

platforms (e.g., Kaggle, Tianchi, Biendata, Crowdanalytix, Tunedit) to look for innovative solutions from 

the crowd instead of developing their own solutions. These contest platforms let third parties compete 

against each other to come up with the most suitable solution for the firm’s needs in exchange for a 

significant monetary prize. In 2018 alone, Kaggle had over 181,000 users participating in data science 

competitions on its platform.1  Sometimes, the winner’s prize goes as high as $1,000,000 in a single 

 
1 Data science competitions include problems in the area of machine learning, big data analytics, algorithm development, etc. The 

number of participants is reported in the article Reviewing 2018 and Previewing 2019 posted in the Kaggle’s official blog on Aug 
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competition.2  This type of open competition offers two key benefits: First, firms could outsource their 

research and development (R&D) process and leverage both in-house expertise and outside talents to 

achieve a better solution. Second, a competition could serve as a way to strategically acquire talented people 

such as data scientists. Given the fixed prize budget allowed to design such competitions, a critical question 

that every contest organizer must confront is how to motivate contestants to exert more effort to come up 

with the best possible solution. 

In most cases, contestants are generally ranked according to their score on a specific metric after 

submitting their solution and a higher prize is awarded to the contestant whose rank is higher. Sometimes, 

contest organizers implement an additional stage, hoping to find a better solution by letting contestants 

compete one more time. That is, some firms shortlist contestants first (i.e., elimination stage) and let only 

the shortlisted participants continue to participate in the next stage of the competition. In data science 

competitions, embedding an elimination stage can be easily implemented by limiting access to full data in 

the first stage. In specific, some data science competitions often involve two stages where a sample (or 

partial) data is offered in the first stage of the contest and, then, shortlisted participants from the first stage 

can continue with access to the full data in the second stage. A survey of the industry practices reveals that 

firms have indeed used various contest designs. To name a few, Google, Facebook, and McKinsey all 

adopted the simplest possible contest structure – that is, one-stage contest where all the contestants are 

competing against each other with the same data only one time.3 On the other hand, Zillow and Microsoft 

implemented two-stage contest where the contestants compete to solve one problem in the first stage and 

the shortlisted contestants keep solving the same problem using more data in the second stage.4 In fact, 

two-stage contests are becoming increasingly popular as most of the data science competitions held in 

Tianchi, the biggest data science competition platform in China, are adopting two stages.5 In this type of 

two-stage contest structure where the task is identical across both stages, contestants keep building their 

second stage solution on top of their first-stage solution. Thus, when contestants are evaluated, their final 

performance is seen as the combination of their first-stage performance and the additional performance 

 
12, 2019. See: https://web.archive.org/web/20190812203743/http://blog.kaggle.com/2019/01/18/reviewing-2018-and-

previewing-2019/  
2 The total prize of the Zillow’s Home Value Prediction Competition was $1,150,000. See: https://www.kaggle.com/c/zillow-

prize-1/overview/prizes  
3  Google hosted a Kaggle competition to build an algorithm that detects objects automatically. See: 

https://www.kaggle.com/c/google-ai-open-images-object-detection-track/overview/prizes Facebook hosted a Kaggle competition 

to predict a user’s choice of a hotel. See: https://www.kaggle.com/c/facebook-v-predicting-check-ins/overview/description 

McKinsey hosted a competition on Analytic Vidhya to solve its daily challenge. See:  

https://datahack.analyticsvidhya.com/contest/mckinsey-analytics-online-hackathon-4/  
4  Zillow hosted a Kaggle competition to estimate home values. See: https://www.kaggle.com/c/zillow-prize-1/overview/ 

Microsoft hosted a competition on Biendata to extract scholars’ profile from text. See:  

https://biendata.com/competition/scholar/timeprize/  
5  Tianchi (https://tianchi.aliyun.com/competition/gameList/activeList), owned by Alibaba, held more than 200 data science 

competitions and has at least 120,000 participants as of 2018, according to Wired UK.  

https://web.archive.org/web/20190812203743/http:/blog.kaggle.com/2019/01/18/reviewing-2018-and-previewing-2019/
https://web.archive.org/web/20190812203743/http:/blog.kaggle.com/2019/01/18/reviewing-2018-and-previewing-2019/
https://www.kaggle.com/c/zillow-prize-1/overview/prizes
https://www.kaggle.com/c/zillow-prize-1/overview/prizes
https://www.kaggle.com/c/google-ai-open-images-object-detection-track/overview/prizes
https://www.kaggle.com/c/facebook-v-predicting-check-ins/overview/description
https://datahack.analyticsvidhya.com/contest/mckinsey-analytics-online-hackathon-4/
https://www.kaggle.com/c/zillow-prize-1/overview/
https://biendata.com/competition/scholar/timeprize/
https://tianchi.aliyun.com/competition/gameList/activeList
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obtained in the second stage. 

While there could be potentially various ways in designing a multi-stage contest in a traditional 

setting, the two-stage contest studied in this paper follows the unique structure commonly adopted by 

firms holding data science competitions. That is, it is different from other traditional types of multi-stage 

contests designed for sports tournaments (Sheremeta 2010a) or political campaigns (Sheremeta 2010b). 

For sports tournaments (e.g., FIFA World Cup) (Sheremeta 2010a), the performance achieved in previous 

stages does not increase the chance of winning in the next stages (because each football match is 

independent), whereas in our context, the previous performance affects the probability of winning the 

subsequent contest. For example, in a data science competition with two stages, if the first-stage 

performance of a contestant’s solution is exceptional with partial data, the contestant can win even without 

any improvement in the next stage because the solution from the first stage can continue to be 

outperforming with full data. In terms of political campaigns (e.g., US presidential election) (Sheremeta 

2010b), each party first selects one candidate in the first stage, and then they compete with competitors 

from other parties in the final stage (e.g., general election). In this case, participants are first divided into 

subgroups and the winners from subgroups are competing again. On the contrary, in our context, 

contestants are simply shortlisted based on their first-stage performance and those compete again in the 

next stage of the two-stage contest. Thus, the two-stage contest design in our paper reflects the unique 

characteristics of data science competitions where contestants are asked to solve the same (or similar) 

problem across stages. 

In addition to the contest structure (i.e., the number of stages), another variation frequently 

observed in designing a contest is prize structure (Lim et al. 2009). Dato and FIND adopted high-spread 

prize structure, in which the contestant with the highest performance gets almost all the prize.6 The most 

extreme case of high-spread prize structure is a winner-takes-all, in which there is only one winner in the 

contest. Other companies such as Quora, Alibaba, and Youku used low-spread prize structure – that is, 

there are multiple winners and the rank-ordered prizes awarded to them are more equally distributed.7 In 

this case, the prize difference between two winners consecutively ranked next to each other is relatively 

small. Given the varying potential designs of the contest structure and the prize structure that firms can 

 
6 Dato hosted a Kaggle competition to predict which web pages served by StumbleUpon are sponsored. It provided $5,000 for the 

first place and others would earn nothing. See: https://www.kaggle.com/c/dato-native/overview/prizes. FIND Technologies Inc. 

hosted a competition on Tunedit for an algorithm that identifies and categorizes data of electromagnetic signatures into 3 classes 

of substances, at an accuracy of 95% or higher. The top winner would receive $40,000 (Canadian dollars) and the remaining five 

winners would get $1,000. See: http://tunedit.org/challenge/material-classification  
7 Quora hosted a Kaggle competition to detect toxic content. The first prize, second prize and third prize are $12,000, $8,000 and 

$5,000 respectively. See: https://www.kaggle.com/c/quora-insincere-questions-classification/overview/prizes Alibaba hosted a 

competition on Tianchi. The first, second and third prize are RMB 80,000, RMB 50,000 and RMB 30,000. See: 

https://tianchi.aliyun.com/competition/entrance/231665/introduction Youku hosted a competition on Tianchi. The prize structure 

is RMB100,000, RMB 60,000, and RMB 40,000 for the first, second and third rank. See:  

https://tianchi.aliyun.com/competition/entrance/231711/introduction  

https://www.kaggle.com/c/dato-native/overview/prizes
http://tunedit.org/challenge/material-classification
https://www.kaggle.com/c/quora-insincere-questions-classification/overview/prizes
https://tianchi.aliyun.com/competition/entrance/231665/introduction
https://tianchi.aliyun.com/competition/entrance/231711/introduction
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adopt in practice, we want to answer the following questions: In holding a data science competition, does 

the contest structure matter? Specifically, should the contest include one stage only or two stages? 

Additionally, given the contest structure, does the prize structure (high-spread vs. low-spread) matter? 

This paper investigates multiple contest designs which are commonly observed in data science 

competitions and examines how a contest organizer can maximize the effort level exerted by contestants 

given a fixed prize budget. To achieve our goal, we propose a base model that abstracts a data science 

competition where contestants are competing for fixed prizes. To observe and compare behaviors of 

contestants across potential contest designs, we employ a 2×2 experimental design by manipulating two 

treatment factors. The first factor that we manipulate is the contest structure where there could be one or 

two stages in a contest (one-stage vs. two-stage). In one-stage treatments, contestants compete for one stage 

only and then their award is determined based on the performance from the single stage. In two-stage 

treatments, all contestants decide their first-stage effort level in the first stage, and then only shortlisted 

contestants decide their additional effort level in the second stage. Their award is determined based on the 

total performance, that is, the sum of the first-stage performance and the second-stage performance. For the 

second factor, we manipulate the prize structure where prizes could be allocated mostly to a single winner 

or more equally distributed among multiple winners (high-spread vs. low-spread). For high-spread 

treatments, the difference between the winner’s prize and the others’ is large whereas, in low-spread 

treatments, such difference is relatively small. 

Our paper contributes to the growing stream of Operation Management (OM) literature studying 

contest design. Many previous studies have focused on a theoretical model to look for the optimal contest 

design in constant-sum competitions (Alpern and Howard 2017), multiple parallel contests (Körpeoğlu et 

al. 2022), and internal contests (Nittala et al. 2022). Regarding contest features, prize structure (Bimpikis 

et al. 2019, Korpeoglu et al. 2021, Nittala et al. 2022), information disclosure (Bimpikis et al. 2019), entry 

policies (Ales et al. 2021), and contest duration (Korpeoglu et al. 2021) have investigated. Other previous 

studies have utilized secondary data to investigate the impact of a particular contest feature such as 

contestants’ prior experience (Menon et al. 2020), contests’ problem specification (Jiang et al. 2021), and 

information disclosure (Wooten 2022) on contest outcomes. Extending previous findings, our research 

leverages an incentive-aligned laboratory experiment (e.g., Davis 2015, Davis and Hyndman 2018, Davis 

et al. 2021) to study the optimal contest design, which allows us to overcome several major challenges in 

empirically examining the effect of the contest design. First, we can make exogenous variations in the 

contest structure and the prize structure across the treatments. Then, we are able to make random 

assignments of participants into different treatments, which cannot be easily done in the field. Second, the 

effort level invested by a contestant is a strategic variable in a contest and it can vary with other factors 

such as whether there are superstar competitors (Zhang et al. 2019) and whether contest organizers provide 
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exemplars (Koh 2019). We can control these factors and focus on the impact of treatment factors in a 

controlled setting. Third, in real life, it could be that a contestant spends a small amount of effort, but the 

solution designed by the contestant achieves good performance due to luck. Given our experimental setup, 

we can accurately measure the effort provision as well as the performance in the experiment whereas we 

can only observe the performance (but, not the effort provision) in the field. This is important because the 

contest organizer cannot alter the ability or the luck of the contestants, but she can only motivate the effort 

provision of the contestants in order to achieve a better solution. Thus, a clear measurement on the effort 

level is an inevitable step to test which factors influence the effort provision in designing a competition, 

which can be more effectively done through a lab experiment. 

The results of our Experiment 1 show the followings: First, we found that contestants’ effort 

provision in one-stage treatments is overall similar to (slightly higher than) the prediction under high-spread 

(low-spread) condition when the prediction is from the base model assuming that players are rational. 

However, in the case of two-stage treatments, contestants significantly boost their first-stage effort in order 

to be shortlisted and, then, they continue to over-exert their effort in the second stage. As a result, in the 

two-stage treatments, contestants tend to invest significantly higher effort than they do in one-stage. In 

addition to the contest structure, we also report the impact of the prize structure. While the prize structure 

does not affect the effort provision in the one-stage treatments, contestants in the two-stage treatments are 

shown to spend more effort under high-spread prize structure. These empirical anomalies cannot be 

explained by the base model alone, which suggests the need to account for behavioral components. 

Furthermore, our work is related to the extensive literature in behavioral OM, which challenges the 

main underlying assumption of fully rational profit-maximizing decision makers in standard OM models. 

In behavioral OM, incorporating behavioral or psychological factors into the player’s utility has been shown 

to explain decision-making behaviors better in various contexts including, but not limited to, newsvendor 

problems (Schweitzer and Cachon 2000, Bolton and Katok 2008, Becker‐Peth et al. 2020) and wholesale 

supply chain (Davis et al. 2014, Davis 2015). Our paper also contributes to this stream by providing a 

formal explanation of the behavior observed in the experiment. We develop a behavioral model that 

generalizes the base model by capturing the psychological utilities of the subjects and we econometrically 

estimate it using our experimental data (e.g., Davis 2015, Davis and Hyndman 2018). We show that our 

generalized model tracks behaviors much better than the base model and other nested models. First, 

contestants exhibit a psychological aversion to being eliminated early. Specifically, having a second stage 

makes the separation of “winning” and “losing” more salient compared to the one-stage contest. Being 

eliminated in the first stage of a two-stage contest clearly signifies losing. In order to avoid “being left 

behind,” also conceptualized as “behind aversion” (Roels and Su 2014), contestants exert much more effort 

than expected in the first stage, which explains our first empirical anomaly. Second, contestants are biased 
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toward their previous decisions (the first-stage effort) and continue exerting a significant amount of effort 

in the second stage. Previous literature suggests that individuals tend to maintain their previous decisions 

and disproportionately stick with the status quo (Samuelson and Zeckhauser 1988). This provides 

contestants with a strong impetus to keep exerting effort in the second stage, which explains our second 

empirical anomaly.  

We also provide further validation of our proposed behavioral model by conducting an additional 

experiment with a different set of experimental parameters and other control factors that may affect results. 

In Experiment 2, we incorporate the risk preference of the contestants, and in Experiment 3, we vary the 

number of participants in a contest. Overall, our parameterized behavioral model with estimates from 

Experiment 1 is able to predict the results of the new experiments quite well. Moreover, in Experiment 4, 

we conduct an additional real-effort experiment to show that our experimental results based on the abstract 

model can be further generalized into a more realistic scenario where real physical efforts are invested. 

Overall, we demonstrate that it is important for the contest organizer to be cognizant of the nonpecuniary 

drivers of contestants in designing data science competitions. 

The rest of the paper is organized as follows: Section 2 reviews related literature and explains the 

potential contribution of our paper. We introduce the models for two different contest structures (one-stage 

and two-stage) and our experimental design in Section 3. In Section 4, we describe our experimental results 

and highlight the main empirical regularities. To explain these, in Section 5, we develop a behavioral model 

that captures contestants’ psychological aversion to falling behind and continuous exertion of effort and 

estimate the behavioral model using the experimental data. Section 6 describes three additional experiments 

that further validate the robustness of our behavioral model. Lastly, Section 7 concludes. 

2. Related literature 

2.1. Tournament Theory and Contest Design 

Our work builds on the literature of tournament theory. Charness and Kuhn (2011) and Dechenaux 

et al. (2015) provide a comprehensive literature review on tournament theory. Previous literature on 

tournament theory considers questions on selection into tournaments (Lazear and Rosen 1981), sabotage 

(Lazear 1989), collusion (Harbring and Irlenbusch 2003), etc. Our paper adds to one important field in the 

tournament theory – that is, contest design. Kalra and Shi (2001) and Moldovanu and Sela (2001) used 

theoretical models to demonstrate the optimal prize structure in a single-stage contest based on the 

assumption of rational players. Their model shows that the optimal contest should have only one winner 

(i.e., winner-take-all). Later, their findings are empirically challenged by Lim et al. (2009), which 

experimentally demonstrates that the prize structure has little impact on contestants’ decisions. Our study 

extends this question by taking a multi-stage contest design into consideration. We also vary the prize 

structure to see how the contest structure’s effect on the contestants’ decision interacts with the prize 
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structure.  

Furthermore, researchers have also studied other important aspects of contest design. One aspect is 

the role of information disclosure in an optimal contest design. Bimpikis et al. (2019) analyze whether and 

when the contest designer should disclose information regarding the competitors’ progress to maximize the 

designer’s expected payoff. Wooten (2022) discovers that leaps improve overall contest performance and 

boost participation rates for complex contests. Other important aspects of contest design include entry 

policies (Ales et al. 2021), contest duration (Korpeoglu et al. 2021), contestants’ prior experience (Menon 

et al. 2020), and contests’ problem specification (Jiang et al. 2021). Our paper adds to this stream of OM 

literature by comparing contestants’ behaviors across multiple contest designs, developing a behavioral 

model that could explain such contestants’ behaviors, estimating it using the experimental data, and 

validating it with additional experiments. 

2.2. Multi-stage Contest Design 

Our work is related to the literature about multi-stage tournament design (See Dechenaux et al. 

2015 for a comprehensive review). Multi-stage contest design is rooted from two models – rent-seeking 

contests (Tullock 2001) and rank-order contests (Lazear and Rosen 1981). In rent-seeking contests, contest 

designers wish to minimize efforts spent by contestants because these efforts are regarded as social waste 

(Tullock 2001, Dechenaux et al. 2015), which is usually applied in political competitions or competitions 

for government subsidy (and public goods). Examples focusing on multi-stage rent-seeking contests are 

listed in Table 1. In contrast to this, in rank-order contests, efforts from contestants are valuable and contest 

organizers wish to maximize the efforts. Our contest design lies in the second category (rank-order contest) 

where contest organizers wish to maximize the effort exerted by contestants. Furthermore, for a typical data 

science competition, the problem that contestants need to solve is identical across stages and thus the 

performances in different stages are considered dependent because the first-stage solution can be used in 

the next stage. This design is unique and different from multi-stage rank-order contests studied previously 

(e.g., Altmann et al. 2012, Delfgaauw et al. 2015) which assume that the performance in each stage is 

independent. Thus, our paper is the first to study a unique context of rank-order contests where the total 

prize is determined based on the total efforts across stages.  

Overall, the multi-stage design in our paper captures the unique characteristics of data science 

competitions which previous papers have not studied. Table 1 summarizes the literature about multi-stage 

tournaments and presents the differences between prior works and our paper (last row). First, columns (1)-

(2) of Table 1 list the model choice (rent-seeking contests vs. rank-order contests) of the corresponding 

paper. Our paper leverages the rank-order contest because prize is awarded based on the rank of the 

contestant in data science competitions. Second, typical two-stage data science competitions shortlist top-

performing participants after the first round while it eliminates others from further participation (column 
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(3)). Third, to reflect the unique context of solving the same questions across stages, the final prize should 

be determined by the total effort instead of the effort in the second stage alone (column (4)). Fourth, 

contestants in our contest are competing against all participants at the same time instead of competing 

within a subgroup (column (5)). Previous literature notices that competing against all contestants often 

yields different results from competing within subgroups (Kalra and Shi 2001). Our paper is unique in 

modeling the data science competitions by including all the four features mentioned above (columns (2)-

(5)). Moreover, our paper also provides an empirical comparison between one-stage contest and two-stage 

contest while previous studies often focused on the two-stage contest design alone (column (6)). To ease 

comparison between one-stage contest and two-stage contest, we let the total prize to be the same across 

different contest structures (column (7)).  

Table 1. Summary of Previous Studies in Multi-stage Contests and Our Paper 

Paper 
Rent-seeking 

Contests 

Rank-order 

Contests 
Elimination 

Prize determined 

by total efforts 
No subgroup 

Comparison 

between one-stage 

and two-stage 

contest 

Total prize same 

between one-stage 

and two-stage 

contest 

 (1) (2) (3) (4) (5) (6) (7) 

Schmitt et al. (2004) ✓   ✓ ✓ ✓  

Parco et al. (2005) ✓  ✓     

Amaldoss and Rapoport (2009) ✓  ✓     

Stracke et al. (2015) ✓  ✓   ✓ ✓ 

Sheremeta (2010a) ✓  ✓ ✓    

Sheremeta (2010b) ✓  ✓   ✓ ✓ 

Fu and Lu (2012) ✓  ✓ ✓ ✓ ✓ ✓ 

Altmann et al. (2012)  ✓ ✓  ✓ ✓  

Delfgaauw et al. (2015)  ✓ ✓     

Mago and Sheremeta (2019) ✓    ✓   

Deutscher et al. (2019)  ✓      

Our Paper  ✓ ✓ ✓ ✓ ✓ ✓ 

3. Model Overview 

3.1. Models of Contest  

We first introduce a base model of a one-stage contest and, then, subsequently show a base model 

of a two-stage contest.8 In both models, there are three contestants competing against each other for prizes. 

Here, for each model, we also provide the theoretical equilibrium based on the assumption of players being 

rational.9 Note that, to cleanly identify the effect of contest structure and prize structure in experiments, we 

start by proposing the simplest possible model. Later in our validation experiments (and Appendix E), we 

further extend by incorporating the risk preference of the contestants and varying the number of participants 

in a contest. Our models allow us to experimentally examine the impact of multiple factors (contest and 

 
8 We use the term “base model” throughout the paper to refer to the models presented in this section (3.1). 
9  Players are assumed to be risk-neutral in our base model. Our validation experiment (Appendix E.1) incorporates the risk 

preference of the contestants. 
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prize structure) in designing a contest and further observe if a certain design motivates contestants to exert 

more effort. 

3.1.1. A Model of One-stage Contest 

Consider a contest that consists of 𝑁 = 3  contestants competing for prizes based on their 

performances. The prize structure of the contest is given by 𝑃1 ≥ 𝑃2 ≥ 𝑃3, where 𝑃1 is the monetary value 

received by the contestant with the highest rank, and so on. The contestant 𝑖 individually decides to spend 

effort 𝑒𝑖 and achieve the performance 𝑦𝑖 according to the following function: 

𝑦𝑖 = 𝑒𝑖 + 𝜖𝑖 (1) 

where 𝜖𝑖 is a random shock faced by the contestant 𝑖, which reflects the uncertainty and other unanticipated 

factors outside the contestant’s control on performance. This assumes that, given the higher effort, a higher 

performance is expected in general. Shocks 𝜖𝑖 are assumed to be drawn independently from the uniform 

distribution 𝑢𝑛𝑖𝑓(−𝑣, 𝑣). In real life, because of the shock, the contest organizer cannot observe the effort 

𝑒𝑖 expanded by the contestant to achieve a given performance 𝑦𝑖 whereas we exactly observe how much 

effort the contestant spent in an experimental setting. Lastly, there is a cost associated with the effort as 

specified by the cost function 𝑐(𝑒𝑖) = 𝑘𝑒𝑖
2, which is strictly increasing and convex. That is, higher the effort, 

higher the chance to win but also higher the cost. Therefore, the payoff function of the contestant is: 

𝜋𝑖 = 𝑃𝑖 − 𝑐(𝑒𝑖) (2) 

where 𝑃𝑖 is the monetary prize given to the contestant 𝑖 based on his rank. Thus, to maximize the payoff, a 

contestant should evaluate the trade-off between winning a higher prize and incurring a higher cost by 

expanding effort. 

Equilibrium of One-stage Contest. Following the definition of “rational players” in previous literature 

(Mullainathan and Thaler 2000, Kalra and Shi 2001, Lim 2010), rational contestants are assumed to care 

about the monetary payoff they receive. Based on the payoff function presented on equation (2), each 

contestant decides his effort level 𝑒𝑖
∗ that maximizes his expected payoff: 

𝑒𝑖
∗ = argmax

𝑒𝑖

𝐸𝜋𝑖 = argmax
𝑒𝑖

∑𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑃𝑟) × 𝑃𝑟
𝑟

− 𝑐(𝑒𝑖) (3) 

where 𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑃𝑟) denotes the probability that the contestant 𝑖’s performance 𝑦𝑖 ranks the 𝑟th position 

among the three contestants and he will be awarded monetary prize 𝑃𝑟. Ranking the 𝑟th position happens 

when the contestant’s performance 𝑦𝑖 is lower than the performance of other 𝑟 − 1 contestants and higher 

than the other 𝑁 − 𝑟 contestants. Considering that all contestants follow the same decision-making process, 

the probability of ranking the 𝑟th position is (Kalra and Shi 2001): 

𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑃𝑟) = ∫ (
𝑁 − 1

𝑟 − 1
) [1 − 𝐹(𝑒𝑖 − 𝑒𝑖

∗ + 𝜖𝑖)]
𝑟−1𝐹𝑁−𝑟(𝑒𝑖 − 𝑒𝑖

∗ + 𝜖𝑖)𝑓(𝜖𝑖)𝑑𝜖𝑖

𝑣

−𝑣

 (4) 

where 𝐹(·)  and 𝑓(·)  are the CDF and PDF of random shock 𝜖𝑖 , which is drawn from the uniform 
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distribution.  

To maximize the expected payoff (𝐸𝜋𝑖) in equation (3), we solve its first order condition for the 

optimal effort level: 

∑
𝜕𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑃𝑟)

𝜕𝑒𝑖
(𝑒𝑖 = 𝑒𝑖

∗) × 𝑃𝑟 − 𝑐
′(𝑒𝑖

∗) = 0 

𝑁

𝑟=1

(5) 

According to Kalra and Shi (2001) and Orrison et al. (2004), the marginal probability of achieving 

rank 𝑟 given the effort 𝑒𝑖 = 𝑒𝑖
∗ would be: 

𝜕𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑃𝑟)

𝜕𝑒𝑖
(𝑒𝑖
∗) =  

{
 
 

 
 

1

2𝑣
, 𝑖𝑓 𝑟 = 1

0, 𝑖𝑓 𝑟 = 2

−
1

2𝑣
, 𝑖𝑓 𝑟 = 3

(6) 

Substituting equation (6) into equation (5), we can solve the symmetric pure-strategy Nash 

equilibrium of the optimal effort for a given prize structure of one-stage contest as follows: 

𝑒𝑖
∗ =

𝑃1 − 𝑃3
4𝑘𝑣

 (7) 

As shown on equation (7), the equilibrium effort by contestants is determined by the difference 

between the first prize and the last prize and it is irrelevant to the second prize.10 This suggests that, in order 

to obtain maximum performance from contestants, the contest organizer should adopt a winner-take-all 

prize structure – that is, except the first rank, other contestants should be awarded the lowest possible prize. 

3.1.2. A Model of Two-stage Contest 

We now extend the model of one-stage contest to include one additional stage. Two-stage contest 

is different from the one-stage in that: (1) Two-stage contest consists of two decision stages for contestants; 

(2) Only two contestants with higher first-stage performance among the three contestants can participate in 

the second stage. The contestant with the lowest first-stage performance cannot proceed to the second stage; 

(3) The prizes given to the contestants are determined by the sum of the performance in both stages.  

The whole procedure of two-stage contest is as follows. Three participants compete against each 

other in the first stage. The contestant whose first-stage performance is the lowest will get the prize 𝑃3 and 

he is eliminated from further competition. The other two contestants (whose first-stage performance is not 

the lowest) will continue to participate in the second stage and compete against each other. The participant 

whose sum of the first-stage performance and the second-stage performance is the highest will win the 

award 𝑃1  and the other contestant gets the award 𝑃2 . This two-stage contest is modeled as follows. 

Contestant 𝑖 ∈ {1, 2, 3} who participates in stage 𝑘 ∈ {1, 2} achieves performance 𝑦𝑖,𝑘 according to: 

𝑦𝑖,𝑘 = 𝑒𝑖,𝑘 + 𝜖𝑖,𝑘 (8) 

 
10 This is consistent with the theoretical prediction of Kalra and Shi (2001) and Lim (2010). 
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where 𝑒𝑖,𝑘 is the effort exerted by contestant 𝑖 in stage 𝑘, and 𝜖𝑖,𝑘 is a random shock faced by contestant 𝑖 

in stage 𝑘. Shock 𝜖𝑖,𝑘 is drawn independently for each contestant in each stage from the uniform distribution 

𝑢𝑛𝑖𝑓(−𝑣, 𝑣) . If the contestant cannot participate in the second stage, his 𝑒𝑖,2 = 0  and  𝑦𝑖,2 = 0 . The 

contestant’s cost function is 𝑐(𝑒𝑖,1, 𝑒𝑖,2) = 𝑘𝑒𝑖,1
2 + 𝑘𝑒𝑖,2

2 . Therefore, the payoff function of the contestant is: 

𝜋𝑖 = 𝑃𝑖 − 𝑐(𝑒𝑖,1, 𝑒𝑖,2) (9) 

where 𝑃𝑖 is the monetary prize given based on the contestant 𝑖’s rank. 

Equilibrium of Two-stage Contest. In this section, we will derive the closed form solution for the two-

stage contest. We use backward induction to solve the problem. In the second stage, two participants choose 

to exert effort 𝑒𝑖,2  to get total performance 𝑦𝑖 = 𝑦𝑖,1 + 𝑦𝑖,2 = 𝑦𝑖,1 + 𝑒𝑖,2 + 𝜖𝑖,2 . We define Δ𝜖𝑘 = 𝜖𝑗,𝑘 −

 𝜖𝑖,𝑘 as the difference between the random shocks of the two contestants who are allowed to participate in 

the second stage (𝑘 = 2 ) with the probability density function 𝑔Δ𝜖𝑘 , which is a triangular distribution 

because shock 𝜖𝑖,𝑘  is drawn from the uniform distribution. The expected payoff for contestant 𝑖  in the 

second stage is as follows: 

𝐸𝜋𝑖,2 = 𝑃𝑟𝑜𝑏(𝑦𝑖 > 𝑦𝑗) × 𝑃1 + 𝑃𝑟𝑜𝑏(𝑦𝑗 > 𝑦𝑖) × 𝑃2 − 𝑐(𝑒𝑖,2) (10) 

where 𝑃𝑟𝑜𝑏(𝑦𝑖 > 𝑦𝑗)  is the probability that contestant 𝑖 ’s total performance is higher than the other 

competing contestant 𝑗’s.  

The first order condition of the second-stage expected payoff 𝐸𝜋𝑖,2 in equation (10) would be: 

(𝑃1 − 𝑃2)𝔼𝜖1[𝑔Δ𝜖2(𝑦𝑖,1 + 𝑒𝑖,2 − 𝑦𝑗,2 − 𝑒𝑗,2)] − 𝑐
′(𝑒𝑖,2) = 0 (11) 

Because 𝑔Δ𝜖 is symmetric around zero and contestants all play equilibrium efforts 𝑒𝑖,1
∗  and 𝑒𝑖,2

∗  in 

the first stage and the second, the unique second-stage subgame perfect Nash equilibrium effort would be:11 

𝑒𝑖,2
∗ =

(𝑃1 − 𝑃2)

2𝑘
𝔼𝜖1[𝑔Δ𝜖2(Δ𝜖1)] =  

(𝑃1 − 𝑃2)

6𝑘𝑣
(12) 

Plugging equation (12) into equation (10), we can solve the expected payoff of entering the second 

stage 𝐸𝜋𝑖,2 =
𝑃1+𝑃2

2
− 𝑐(𝑒𝑖,2

∗ ). Then, it reduces to a one-stage contest with 𝑁 = 3 participants and the prize 

structure 𝑃1 = 𝑃2 = 𝐸𝜋𝑖,2 ≥ 𝑃3. Substituting this prize structure into equation (7), we can derive the first-

stage equilibrium effort as follows: 

𝑒𝑖,1
∗ =

𝐸𝜋𝑖,2 − 𝑃3
4𝑘𝑣

=
18𝑘𝑣2𝑃1 + 18𝑘𝑣

2𝑃2 − 𝑃1
2 + 2𝑃1𝑃2 − 𝑃2

2 − 36𝑘𝑣2𝑃3
144𝑘2𝑣3

 (13) 

In order to maximize the equilibrium effort by contestants in two-stage contest, contest organizers 

should make the prize spread as big as possible because of the following reasons: First, equation (12) 

suggests that, to maximize the second-stage equilibrium effort 𝑒𝑖,2
∗ , the difference between 𝑃1 and 𝑃2 should 

 
11 𝔼𝜖1[𝑔Δ𝜖2(Δ𝜖1)] = ∫ 𝑔Δϵ2(𝑧)

2𝑣

−2𝑣
𝑔Δϵ1(𝑧)𝑑𝑧 = ∫ 𝑔Δϵ1(𝑧)

22𝑣

−2𝑣
𝑑𝑧 =

1

3𝑣
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be as big as possible. Second, based on equation (13), the first-stage equilibrium effort 𝑒𝑖,1
∗   can be 

maximized when the difference between the second-stage’s expected award (𝑃1 + 𝑃2)/2  and the last prize 

𝑃3 is big. Based on the two models presented here, we propose our experimental design and parameterize 

our models next. Then, we subsequently present our model predictions in Section 3.4. 

3.2. Experimental Design  

Our main experiment employs a 2×2 factorial between-subject design to examine the following 

two questions: First, how do different contest structures affect effort provision? Second, how do prize 

structures influence effort provision? We elaborate on our treatments below.   

The first factor that we study is contest structure (one-stage contest vs. two-stage contest) where 

we manipulate the number of stages in the contest. In one-stage treatments, the contest consists of only one 

stage. Contestants’ ranks and prizes are determined by their performance based on a single decision task, 

which is a function of their effort and random shock. In two-stage treatments, the contest consists of two 

stages. The first-stage performance will decide whether or not the contestant is allowed to participate in the 

second stage. The total performance determines the prize earned. That is, both the first-stage decision and 

the second-stage decision can affect the final rank and the final prize. The second treatment variable that 

we manipulate is prize structure (high-spread vs. low-spread). In high-spread treatments, the spread of 

prizes is wide. We operationalize this by setting the top prize as 8 and both the second and third prizes as 2. 

Thus, the difference between the highest prize and the lowest is as high as 6. In low-spread treatments, the 

difference between two consecutive prizes is equal to 2. That is, the first prize is 6, the second prize is 4, 

and the third prize is 2. In this way, we are able to fix the total budget for prizes in both high-spread and 

low-spread treatments to be the same at 12. This design yields four treatments in Table 2. 

Table 2. Summary of Treatments 

# Treatment Label Treatment Abbreviation Contest Structure Prize Structure 

1 One-High OH One-stage contest 𝑃1 = 8, 𝑃2 = 2, 𝑃3 = 2 

2 Two-High TH Two-stage contest 𝑃1 = 8, 𝑃2 = 2, 𝑃3 = 2 

3 One-Low OL One-stage contest 𝑃1 = 6, 𝑃2 = 4, 𝑃3 = 2 

4 Two-Low TL Two-stage contest 𝑃1 = 6, 𝑃2 = 4, 𝑃3 = 2 

One-High Treatment (OH). In this treatment, the contest consists of only one stage and the prize spread 

is high. Here, we detail how the parameters for the high-spread prize structure are chosen. Note that, the 

model equilibrium shown in equation (7) suggests that, given a fixed budget, a winner-take-all prize 

structure can maximize effort provision from contestants. Thus, the first rank should take the most prizes 

while the other contestants should be awarded the lowest possible prize. In our experiment, we set the total 

budget to be 12. Ideally, prize structure of 𝑃1 = 12, 𝑃2 = 0, 𝑃3 = 0 would lead to the highest possible 

effort in theory.12  However, in this case, if contestants exert effort greater than 0, two-thirds of the 

 
12 In Experiment 4 (Appendix E.3), we conduct an additional experiment with winner-takes-all prize structure. 
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contestants’ payoff would be negative under the equilibrium (equation (7)) because such effort bears a 

significant cost. Therefore, we set prize structure 𝑃1 = 8, 𝑃2 = 2, 𝑃3 = 2 to make sure that we mimic the 

scenario where prize structure is as spread as we can and, at the same time, contestants would obtain 

positive payoffs from our experiment.13 We set 𝑣 = 15 and 𝑘 = 1/180 for the shocks and cost parameters. 

Two-High Treatment (TH). The treatment consists of two stages in the contest. In the first stage, the last 

prize is given to the last performer and the other two contestants proceed to the second stage. In the second 

stage, top 2 prizes are given according to the total performance (i.e., the sum of the first-stage performance 

and the second-stage performance). The prize structure is the same as One-High (OH).  

One-Low Treatment (OL). The treatment is identical to One-High above with one exception: the prize 

structure. Here, the difference between consecutive prizes is smaller and prizes are more equally distributed. 

We operationalize this low-spread prize structure by setting 𝑃1 = 6,𝑃2 = 4, 𝑃3 = 2 as mentioned above. 

Two-Low Treatment (TL). This treatment is identical to Two-High above except that the prize structure is 

the same as One-Low: 𝑃1 = 6, 𝑃2 = 4, 𝑃3 = 2.  

The parameter setup presented here is for the main experiment (Experiment 1). To validate that 

our experimental results are not driven by a specific choice of parameters, we conducted an additional 

experiment with a different set of parameters in Appendix E.1 and E.2.  

3.3. Experimental Procedure  

As presented throughout this Section, we chose an abstract setting in our main experiment for two 

following reasons. In the literature studying effort provision, two main paradigms exist: one based on 

stated effort and the other based on real effort (Charness et al. 2018). With a stated-effort approach, 

subjects are presented with a list of decision options (i.e., effort choices) and their associated costs. The 

choice of “effort” involves a clear numerical cost, which influences the payoff of the subjects (Bull et al. 

1987, Fehr et al. 1993). The advantage of the stated-effort approach is that there is no uncertainty regarding 

an individual’s cost of effort. With full disclosure of the cost function, subjects can make an informed 

decision that maximizes their welfare. This makes us possible to test a theory and to identify empirical 

anomalies between the theory and the experiment.  

Another reason for using an abstract model in our experiment is that data science contests have a 

wide range of contexts, which may impact the results differently. For example, the level of difficulty of 

the problem being solved, the different measurements of performance, and the heterogenous ability of 

contestants can all have a significant impact. To help ensure that our observations on the impact of the 

two contest design features are applicable to any data science contests in general, and not specific to a 

particular context in which the contest was held, experimentally testing an abstract model is preferred. 

 
13 This is one limitation of experimentally testing our abstract model to avoid participants ending up with a negative payoff. 
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This means that the experiment being conducted is framed in a way that is not tied to any specific industry 

or domain. This allows for a more controlled and fair interpretation of the results, making it easier to 

identify the impact of the contest structure and prize structure. One limitation of our approach is that 

selecting a number may not accurately represent the field environment due to abstraction of the reality.  

The whole experiments consist of 352 students at a large research university, with 165 students in 

our main experiment (Experiment 1) and 187 students in three validation experiments (Appendix E). Each 

of the four treatments in the main experiment consisted of 39~42 students and each student only 

participated in one treatment. In each treatment, there are 15 decision rounds. We implemented the 

experiment using z-Tree software (Fischbacher 2007). The participants earned cash awards ($8 on 

average) based on their game outcomes (i.e., the sum of payoffs) across 15 rounds. Table 3 maps the 

terminology used in our base models to the terms used in the experimental instructions for each treatment. 

Figure 1 shows the decision steps faced by participants. The instruction for the One-High treatment (OH) 

is in Appendix A.  

Table 3. Terminology in the Model and the Experiment 

Contest Structure Model Experiment  Treatment Abbreviation 

All Contestants Participants OH, TH, OL, TL 

One-stage 𝑒𝑖 Decision Number OH, OL 

 𝜖𝑖   Random Number OH, OL 

 𝑦𝑖 = 𝑒𝑖 + 𝜖𝑖  Final Number OH, OL 

Two-stage 𝑒𝑖,1 First Decision Number TH, TL 

 𝜖𝑖,1 First Random Number TH, TL 

 𝑦𝑖,1 =  𝑒𝑖,1 + 𝜖𝑖,1 First Stage Number TH, TL 

 𝑒𝑖,2 Second Decision Number TH, TL 

 𝜖𝑖,2 Second Random Number TH, TL 

 𝑦𝑖,2 =  𝑒𝑖,2 + 𝜖𝑖,2 Second Stage Number TH, TL 

 𝑦𝑖 = 𝑦𝑖,1 + 𝑦𝑖,2 Final Number  TH, TL 

All 𝑐(𝑒𝑖) Decision Cost OH, TH, OL, TL 

 𝑃1, 𝑃2, 𝑃3 Award OH, TH, OL, TL 

 𝜋𝑖 Participant’s Point Earning OH, TH, OL, TL 

 

One-stage Contest (OH and OL). At the start of each round, participants needed to enter a Decision 

Number (𝑒𝑖) between 1 and 35 into the computer. They were informed that each decision number carries a 

corresponding Decision Cost (𝑐(𝑒𝑖)). The decision costs were provided in the “Decision Cost Table”. Next, 

the computer would generate a Random Number (𝜖𝑖) from uniform distribution 𝑢𝑛𝑖𝑓(−15,15) for each 

participant and calculate the corresponding Final Number (𝑦𝑖 = 𝑒𝑖 + 𝜖𝑖). Awards (𝑃1 ≥ 𝑃2 ≥ 𝑃3) would be 

given to participants according to their Final Number. Participants with the highest Final Number would be 

given 𝑃1, and so on. At the end of each round, participants would privately see their rank and their Point 

Earnings calculated by the Award received minus the Decision Cost incurred. 

Two-stage Contest (TH and TL). In the first stage of each round, participants were asked to choose a First 

Decision Number (𝑒𝑖,1) between 1 and 35. There was also a corresponding Decision Cost (𝑐(𝑒𝑖,1)) for each 
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First Decision Number. Next, the computer would generate each participant’s First Random Number (𝜖𝑖,1) 

from uniform distribution 𝑢𝑛𝑖𝑓(−15,15) and calculate the First Stage Number (𝑦𝑖,1 = 𝑒𝑖,1 + 𝜖𝑖,1). Then, 

participants would see whether or not they can participate in the second stage. If their First Stage Number 

was not the lowest among the three, they could participate in the second stage. In the second stage, two 

shortlisted participants needed to select a Second Decision Number (𝑒𝑖,2) between 1 and 35, which also has 

a corresponding Decision Cost (𝑐(𝑒𝑖,2)). The computer would generate a Second Random Number (𝜖𝑖,2) 

from 𝑢𝑛𝑖𝑓(−15,15) and then calculate the Second Stage Number (𝑦𝑖,2 = 𝑒𝑖,2 + 𝜖𝑖,2) as well as the Final 

Number (𝑦𝑖 = 𝑦𝑖,1 + 𝑦𝑖,2). Awards (𝑃1 ≥ 𝑃2 ≥ 𝑃3) would be given to participants according to their Final 

Number. At the end of each round, participants would privately see their rank and their Point Earnings. 

Figure 1. Steps in Each Round of the Experiment 

(a) One-stage Contest (OH, OL) 

 
(b) Two-stage Contest (TH, TL) 

 
3.4. Base Model Prediction with Rational Contestants  

Our base model prediction is based on the model equilibrium presented in Section 3.1. If 

participants are rational, they would behave to maximize their expected payoff and their decision would 

follow equation (7) for One-High (OH) and One-Low (OL) and equation (13) and equation (12) for the first 

stage and second stage of Two-High (TH) and Two-Low (TL). Under the same prize structure, the difference 

in the total effort between two-stage contest and one-stage contest is given by (see Appendix B for details): 

(𝑒𝑖,1
∗ + 𝑒𝑖,2

∗ ) − 𝑒𝑖
∗ =

[6𝑘𝑣2 − (𝑃1 − 𝑃2)](𝑃1 − 𝑃2)

144 𝑘2𝑣3
∈ (0,

9

144
𝑣] (14) 

Equation (14) suggests that 
𝑒𝑖,1
∗ +𝑒𝑖,2

∗

𝑒𝑖
∗ ≤ 1.083 and the maximum value is obtained when 𝑃1 − 𝑃2 =

3𝑘𝑣2 and 𝑃2 = 𝑃3. In other words, the difference of the total effort between two-stage contest and one-

stage contest cannot exceed 8.3%, which suggests that the efforts from both contests are expected to be 

rather similar. Moreover, based on equations (7), (12), and (13), high-spread prize structure is expected to 

yield higher effort than low-spread prize structure. 

Table 4’s left part displays the base model predictions with the corresponding parameters adopted 

for each of the four treatments. To be specific, given that the budget is fixed at 12, the expected total efforts 
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are 18 for One-High and 18.6 for Two-High under high-spread prize structure, which are quite similar (3.3% 

difference). In terms of low-spread prize structure, the expected total efforts are 12 for One-Low and 12.7 

for Two-Low, again quite similar (5.8% difference) between the two, but they are significantly lower (about 

6 points lower for both contest structures) than those of high-spread treatments. In other words, the contest 

structure does not matter much whereas high-spread prize structure is surely preferred. 

4. Experimental Results  

Table 4. Design and Summary of Experimental Results 

  Base Model Prediction 

𝜷 = 𝜃𝑇 = 0 

Experiment result:  

average effort 

Contest Structure  Prize structure: High-

spread 

Prize Structure: Low-

spread 

Prize structure: High-

spread 

Prize Structure: Low-

spread 

One-stage contest 𝑒𝑖 18.0 12.0 16.5 (11.8) 15.0 (9.3) 

N=585 N=630 

t=-1.18, p=0.238 t=2.55, p=0.011 

Two-stage contest 𝑒𝑖,1 + 𝑒𝑖,2 18.6 12.7 33.3 (16.0) 24.7 (12.1) 

N=420 N=420 

t=7.23, p<0.001 t=7.88, p<0.001 

𝑒𝑖,1 6.6 8.7 12.9 (9.5) 12.7 (7.2) 

N=630 N=630 

t=5.16, p<0.001 t=4.75, p<0.001 

𝑒𝑖,2 12.0 4.0 17.6 (9.8) 10.2 (8.2) 

N=420 N=420 

t=4.75, p<0.001 t=5.69, p<0.001 

Ratio of Two-stage to 

One-stage 

𝑒𝑖,1 + 𝑒𝑖,2
𝑒𝑖

 
103% 106% 202% 165% 

Note: Numbers in parentheses are standard deviations. The t-statistics and p-values refer to the t-tests of the average effort from 

experimental results compared with the corresponding prediction of the base model. Standard errors are clustered at the 

participant’s level. 𝜷 refers to 𝛽𝑂 , 𝛽𝑇1 and 𝛽𝑇2. 

The summary of our experimental results for the four treatments is shown in the right-hand panel 

of Table 4.14 To ease comparison, we also present the base model predictions for the four treatments in the 

left-hand panel of Table 4. For one-stage treatments, the average effort level is 16.5 for One-High (OH) and 

15.0 for One-Low (OL). In two-stage treatments, the average total effort is 33.3 for Two-High (TH) and 

24.7 for Two-Low (TL). Specifically, in the Two-High treatment, the average of the first-stage effort and 

that of the second-stage effort are 12.9 and 17.6 respectively. For the Two-Low treatment, the first-stage 

effort and the second-stage effort are 12.7 and 10.2 on average. Note that the ratio of total effort in two-

stage contest to that in one-stage contest is 202% for high-spread prize structure and 165% for low-spread 

prize structure, both much higher than the base model prediction (High-spread: 103%, Low-spread: 106%). 

The average of the total effort level in every decision round for each of the four treatments is plotted 

in Figure 2(a) and, similarly, the average effort level of each stage for each of the two-stage treatments is 

 
14 Note that, for two-stage treatments, since only two thirds of participants are allowed to make a decision in the second stage, the 

number of effort decisions (N) in the second stage is two-thirds of the number of the first-stage effort decisions. 
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plotted in Figure 2(b). We represent the average effort with a solid line and the base model prediction with 

a dashed line. We observe that average effort levels (solid line) are always above the base model predictions 

(dashed line) except for One-High. We now proceed to discuss the formal statistical tests we conducted to 

examine the impact of contest and prize structures on participants’ effort decisions.  

Figure 2. Mean Effort Decisions Across 15 Decision Rounds in Main Experiment 

(a) Mean Total Effort of Four Treatments 

 

(b) Mean Effort in Each Stage of Two-stage Treatments 
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4.1. Comparing decisions against the base model.  

To compare participants’ effort decisions (right panel of Table 4) against the point predictions from 

the base model (left panel of Table 4), we conducted t-tests. Because participants made multiple decisions 

across 15 rounds, we clustered the standard errors at the participant’s level to account for potential within-

subject correlation (Chen et al. 2011, Kim et al. 2019, Chung et al. 2020).15 The statistical test results are 

listed in the right panel of Table 4.  

The average effort of One-High is 16.5, which appears slightly below, but not significantly different 

from the base model prediction of 18.0 (t=-1.18, p=0.238). However, the average effort of One-Low (15.0) 

is slightly above and significantly different from the prediction of 12.0 (t=2.55, p=0.011). In terms of two-

stage treatments, the experimental results of each stage in the two treatments are all significantly greater 

than the base model predictions. For the first-stage effort, the average effort in Two-High and Two-Low are 

12.9 and 12.7, both significantly higher than base model predictions of 6.6 (t=5.16, p<0.001) and 8.7 

(t=4.75, p<0.001) respectively. The average effort in the second stage for Two-High and Two-Low are 17.6 

and 10.2, which are again significantly higher than the predictions of 12.0 (t=4.75, p<0.001) and 4.0 (t=5.69, 

p<0.001). As a result, the total effort (which combines two effort levels from both the first stage and the 

second stage) for two-stage treatments for two different prize structures are at least 12 points higher (79% 

more) than the base model predictions (Two-High: t=7.23, p<0.001; Two-Low: t=7.88, p<0.001). Figure 2 

also displays similar patterns. Across all 15 decision rounds, the average effort in each round (solid line) is 

located above base model prediction (dashed line) in all the treatments except for One-High.16  

In sum, comparing against the base model predictions, contestants significantly boost their effort 

in both stages of the two-stage treatments whereas, in the one-stage treatments, contestants’ effort level is 

close to (or slightly higher than) the base model prediction. When we compare effort levels in the first half 

rounds (Rounds 1-8) and the second half rounds (Rounds 9-15) separately against the above predictions for 

each treatment, the results remain largely the same (see Appendix C). These results suggest that contestants 

are also motivated by nonpecuniary preferences when making decisions. 

4.2. Comparing decisions between one-stage and two-stage contest structure.  

This section aims to examine the following question: Given a fixed budget of prize pool, which 

contest structure (one-stage vs. two-stage) would let contestants exert more effort? Note that the base model 

suggests that the contest structure does not matter much. That is, under the same prize structure, one-stage 

 
15 We did this for all the statistical tests reported in this paper. We also performed Wilcoxon Rank-Sum test and the results are 

consistent. 
16  Figure 2 suggests presence of learning behavior in in the lab experiments. However, it is unlikely that contestants would 

significantly lower their efforts by participating in a large number of competitions over a short period of time in a real data science 

competition platform. For example, Kaggle users participate in 2.8 data science competitions on average, based on the metadata 

provided by Kaggle (see https://www.kaggle.com/code/jtrotman/meta-kaggle-count-user-activities. Retrieved on 30th Jan, 2023). 

We thank the SE and the anonymous reviewer for this insightful observation. 
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contest and two-stage contest should yield similar effort levels (less than 8.3% difference) in theory. To 

answer the above question, we conduct pairwise t-tests between the two contest structures. 

We first compare the average total effort levels between two different contest structures under the 

same prize structure. Table 5 summarizes the t-test results. Two-stage treatments significantly outperform 

one-stage counterparts under both high-spread prize structure (Δ𝑒̅ = 16.8, t=7.04, p<0.001) and low-spread 

prize structure (Δ𝑒̅ = 9.7, t=5.08, p<0.001), which is significantly larger than the base model predictions. 

In the experiment, the total effort for two-stage treatments is 165% (low-spread) to 202% (high-spread) of 

the effort in one-stage treatments although the base model suggests total effort in two-stage contest should 

be only 3% (high-spread) to 6% (low-spread) higher. These suggest that, given a fixed budget, the contest 

organizer should choose to implement two-stage contest where they let all contestants participate in the first 

stage and make the shortlisted contestants continue to solve the same problem. 

Table 5. Comparison between Different Contest Structures 

 Experiment Result: Average Total Effort 

t-statistics p-values Prize Structure Contest Structure: 

One-stage Contest 

Contest Structure: 

Two-stage Contest 

Ratio of Two-

stage to One-stage 

High-spread 16.5 33.3 202% -7.04 <0.001 

Low-spread 15.0 24.7 165% -5.08 <0.001 

Note: t-tests are conducted between different contest structures under the same prize structure. Standard errors are clustered 

at the participant’s level. 

Notice that, while our results are directionally in line with the base model predictions, the 

magnitudes of differences are much greater than expected. This observation is quite surprising given that 

many papers in experimental OM show that the differences observed from experimental results are often 

smaller than theory predictions. For example, Davis et al. (2014) found that experimental results of push 

and pull contracts qualitatively agree with the theory, but the actual level of profit difference is smaller. 

Similarly, Davis (2015) experimentally found that the benefit of the coordinating contracts over the 

wholesale price contract is less than the standard theory predicts. These indicate that behavioral components 

play an important role in participants’ decision making, especially in the two-stage treatments.17  

4.3. Comparing decisions between high-spread and low-spread prize structure.  

Next, we conduct t-tests between different prize structures while keeping the same contest structure 

to answer the following question: Which prize structure would yield a higher effort level? The base model 

suggests that the high-spread prize structure is better. Kalra and Shi (2001) demonstrated that if shocks 

follow uniform distribution, the winner-takes-all prize structure would yield the best performance. In our 

context, high-spread prize structure best mimics the winner-takes-all prize structure because the 2nd and the 

3rd rank can only win the award 𝑃2 = 𝑃3 = 2 and most money goes to the 1st rank. 

 
17 We thank the SE and the anonymous reviewer for this sharp observation. 
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The left-panel of Table 6 shows the average effort for each of the four treatments. The right-panel 

of Table 6 displays the results of t-tests between two different prize structures under the same contest 

structure. For one-stage, the prize structure does not influence contestants’ decisions on effort (Δ𝑒̅ = 1.5, 

t=0.87, p=0.384), which is in line with Lim et al. (2009)’s findings. In terms of two-stage, prize structure 

does not influence the first-stage decisions whereas it influences the second-stage decisions. The second-

stage effort of high-spread is significantly higher than that of low-spread prize structure (Δ𝑒̅ = 7.4, t=4.63, 

p<0.001). In consequence, the total effort of high-spread is also significantly higher than that of low-spread 

prize structure (Δ𝑒̅ = 8.6, t=3.39, p=0.001). As Kalra and Shi (2001) showed that the winner-take-all prize 

structure is better in theory, our experimental results show that the winner-take-all prize structure indeed 

works well in two-stage contests. Our experimental results clearly show that the number of stages should 

be considered first in determining which prize structure is preferred.18 

Table 6. Comparison between Different Prize Structures 

  Experiment Result: Average Effort t-statistics p-values 

Contest Structure Stage Prize structure:  

High-spread 

Prize Structure:  

Low-spread 

One-stage Contest 𝑒𝑖 16.5 15.0 0.87 0.384 

Two-stage Contest 𝑒𝑖,1 + 𝑒𝑖,2 33.3 24.7 3.39 0.001 

𝑒𝑖,1 12.9 12.7 0.14 0.887 

𝑒𝑖,2 17.6 10.2 4.63 <0.001 

Note: t-tests are conducted between different prize structures under the same contest structure. Standard errors are clustered 

at the participant’s level. 

4.4. Comparing decisions between first stage and second stage in two-stage contest.  

In this section, we provide some suggesting evidence that contestants tend to stick with their 

previous decisions. We plot the histogram of the absolute difference between the second-stage effort and 

the first-stage effort |𝑒𝑖,2 − 𝑒𝑖,1| in Figure 3(a) and superimpose dots showing whether 𝑒𝑖,2 − 𝑒𝑖,1 is positive 

(cross dots) or negative (circle dots). As is shown in Figure 3(a), sticking with previous decision (𝑒𝑖,2 −

𝑒𝑖,1 = 0) is most frequently observed in both Two-High treatment and Two-Low treatment. Furthermore, 

based on the absolute difference of 𝑒𝑖,2 − 𝑒𝑖,1, we categorize contestants into several categories: 0~5 (|𝑒𝑖,2 −

𝑒𝑖,1| ≤ 5), 5~10 (5 < |𝑒𝑖,2 − 𝑒𝑖,1| ≤ 10), 10~15 (10 < |𝑒𝑖,2 − 𝑒𝑖,1| ≤ 15), 15~20 (15 < |𝑒𝑖,2 − 𝑒𝑖,1| ≤ 20), 

20~25 (20 < |𝑒𝑖,2 − 𝑒𝑖,1| ≤ 25), 25~30 (25 < |𝑒𝑖,2 − 𝑒𝑖,1| ≤ 30), >30 (|𝑒𝑖,2 − 𝑒𝑖,1| > 30) and calculate the 

proportion that falls into each category at each decision round in Figure 3(b). Category 0~5 represents the 

contestants whose second-stage effort does not deviate too much from their first-stage effort. Figure 3(b) 

shows that the proportion of category 0~5 is around 50% across all decision rounds (Two-High: 51%, Two-

 
18 Given that the prize structure is only slightly different across treatments, the difference in effort provision between high-spread 

and low-spread prize structure of two-stage contest is significant. Our two-stage results may be even larger under winner-takes-

all design where the last prize 𝑃3 = 0. Similarly, this indicates that the difference in one-stage treatments might be understated. 

We thank the SE and the anonymous reviewer for this insightful comment. 
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Low: 46% in total), suggesting that most contestants avoid deviating much from their previous decisions.  

Figure 3. Distribution of |𝒆𝒊,𝟐 − 𝒆𝒊,𝟏| 

(a) Histogram of |𝑒𝑖,2 − 𝑒𝑖,1| 

 

(b) Proportion of |𝑒𝑖,2 − 𝑒𝑖,1| across Decision Rounds 

 

4.5. Summary of empirical regularities.  

Overall, we show the following empirical regularities: Two-stage contests achieve higher effort 

levels from contestants than one-stage contests do. High-spread prize structure is better under two-stage 

contests whereas prize structure does not matter for one-stage contests. More specifically, as discussed 

earlier, a detailed examination of experimental results reveals that contestants boost their effort in both of 

the first stage (Two-High: Δ𝑒̅ = 6.3, t=5.16, p<0.001; Two-Low: Δ𝑒̅ = 4, t=4.75, p<0.001) and the second 

stage (Two-High: Δ𝑒̅ = 5.6 , t=4.75, p<0.001; Two-Low: Δ𝑒̅ = 6.2 , t=5.69, p<0.001) of the two-stage 

contest whereas the effort levels do not deviate much from the base model predictions in the one-stage 

contest. Moreover, the total effort of two-stage contest is almost twice of the total effort of one-stage contest. 

These empirical regularities cannot be explained by predictions from our base model. In the next section, 

we propose a behavioral model with two non-pecuniary factors that help explain the contestants’ behaviors. 

5. Behavioral Model 

While standard theory assumes that people behave rationally to maximize their own monetary 
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payoff, the recent developments in behavioral OM suggest that many choices are driven by both monetary 

payoff and behavioral factors (Mullainathan and Thaler 2000, Camerer 2011, Davis et al. 2014, Davis 2015, 

Becker‐Peth et al. 2020). Our behavioral model is also motivated by such possibility that the contest 

structure may psychologically influence contestants’ decisions. The previous literature on tournaments has 

shown that aversion to being responsible for teams’ loss can yield higher effort (Chen and Lim 2013), and 

contestants often care about their outcome relative to other contestants (Lim 2010). Relatedly, Roels and 

Su (2014) proposed the concept of “behind aversion” to characterize situations where people may face  

disutility from underperforming relative to others. In our context, it could be that, in two-stage design, being 

eliminated from further competition after the first stage can be seen as a clear sign of failure and falling 

behind. If they cannot participate in the second stage, they will feel that they are underperforming relative 

to other contestants who are allowed to participate in the second stage. This psychological aversion to being 

eliminated, also conceptualized as “behind aversion” (Roels and Su 2014) will motivate contestants to exert 

more effort in order to enter the second stage. Therefore, we include the first parameter of interest 𝛽 to 

capture a contestant’s disutility from losing the competition – i.e., whether the contestant is averse to being 

left behind.  

In addition, in multi-stage contests, contestants who continue to participate in the next stage may 

continue exerting significant effort in the second stage. Previous literature suggests that people have a 

tendency to stick with their previous decisions (Samuelson and Zeckhauser 1988, Fernandez and Rodrik 

1991, Masatlioglu and Ok 2005). The concept of this phenomenon has been used to explain many irrational 

behaviors of firms as well as individuals. For example, organizations sometimes resist implementing large-

scale information technologies or replacing an incumbent system because of status quo (Kim and 

Kankanhalli 2009, Polites and Karahanna 2012). With regard to healthcare choices, mothers usually stick 

to maintaining the traditional infant healthcare practice (Venkatesh et al. 2016). Long et al. (2020) show 

that status quo explains delaying project abandonment. In our context, contestants are likely to maintain the 

status quo and, as a result, they are averse to deviating from their previous decisions (i.e., continuously 

over-exerting effort). Thus, the second parameter 𝜃 in our behavioral model measures the psychological 

disutility from deviating from their previous decisions. This parameter exists only in two-stage contests. 

Our behavioral model nests the base model if all the behavioral parameters are zero. We specify the 

behavioral model for one-stage contests and two-stage contests in greater detail in Sections 5.1 and 5.2 

respectively. 

5.1. Contestant’s Utility in One-stage Contest 

Here, we start by presenting the behavioral model for one-stage contest first. A critical question 

when modeling a contestant’s psychological utility loss from being left behind is how a reference point is 

formed by the contestant to make a comparison with others (Tversky and Kahneman 1979, Loewenstein et 
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al. 1989, Roels and Su 2014). The most natural way would be that the contestant evaluates his prize against 

the average value of all available prizes (Lim 2010, Roels and Su 2014). Thus, by incorporating that the 

contestant may experience psychological loss when his prize is lower than the average prize 𝑃𝑎𝑣𝑔 , we 

propose the utility function for contestant 𝑖 at round 𝑡 of one-stage contest as: 

𝑈𝑖,𝑡(𝑒𝑖,𝑡|𝛽𝑂) =  ∑ 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃𝑟) × {𝑃𝑟 − 𝐼(𝑃𝑎𝑣𝑔 > 𝑃𝑟) × 𝛽𝑂 × (𝑃𝑎𝑣𝑔 − 𝑃𝑟)}

𝑟∈{1,2,3}

− 𝑐(𝑒𝑖,𝑡) (15) 

The first component of equation (15) is a sum of expected returns from the contest being ranked at 

the first, the second, or the third while the last component is a decision cost (𝑐(𝑒𝑖,𝑡) ). In specific, 

𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃𝑟)  refers to the probability of the contestant 𝑖  being ranked at rth position in round 𝑡  as 

discussed in Section 3.1. The utility of winning the rth prize equals to the monetary prize 𝑃𝑟 minus the 

disutility from being left behind. Notice that the contestant experiences this disutility ((𝛽𝑂 × (𝑃𝑎𝑣𝑔 − 𝑃𝑟)) 

only when the awarded prize is lower than the average (i.e., 𝑃𝑎𝑣𝑔 > 𝑃𝑟). 𝛽𝑂 > 0 captures the existence of 

disutility from underperforming relative to others in one-stage contest. The magnitude of the disutility 

depends on the difference between the average prize 𝑃𝑎𝑣𝑔 and the awarded prize 𝑃𝑟. Basically, the lower 

the prize the contestant receives, the higher the disutility the contestant experiences.  

By solving the first order condition of the utility function in equation (15), we have the following 

equilibrium: 

𝑒𝑖
∗ =

𝑃1 − 𝑃3 + 𝛽𝑂(𝑃𝑎𝑣𝑔 − 𝑃3)

4𝑘𝑣
 (16) 

If 𝛽𝑂 = 0 , equation (16) nests the base model (i.e., equation (7)) as a special case where the 

contestant is rational and only cares about the monetary components. 

5.2. Contestant’s Utility in Two-stage Contest 

In this section, we provide the behavioral model for two-stage contest. In addition to the behind 

aversion parameter 𝛽 introduced in our model for one-stage contest, we also include a parameter 𝜃 which 

captures contestants’ tendency to stick with previous decisions in the second stage of the two-stage contest. 

Here, we first specify the contestant’s utility function in the second stage (𝑘 = 2) of two-stage contest: 

𝑈𝑖,2,𝑡(𝑒𝑖,2,𝑡|𝜃𝑇 , 𝑒𝑖,1,𝑡)

= ∑ 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃𝑟) × {𝑃𝑟 − 𝐼(𝑃𝑎𝑣𝑔
′ > 𝑃𝑟) × 𝛽𝑇2 × (𝑃𝑎𝑣𝑔

′ − 𝑃𝑟)}

𝑟∈{1,2}

− 𝜃𝑇(𝑒𝑖,2,𝑡 − 𝑒𝑖,1,𝑡)
2
− 𝑐(𝑒𝑖,2,𝑡) (17)

 

In the second stage of two-stage contest, only two shortlisted contestants can participate. The first 

component measures the utility from receiving the first rank and the second rank. 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃𝑟) refers 

to the probability of ranking at rth position in round 𝑡 and the utility equals the monetary prize 𝑃𝑟 minus the 

additional disutility (𝛽𝑇2 × (𝑃𝑎𝑣𝑔
′ − 𝑃𝑟)) only when the awarded prize is lower than the average (i.e., 𝑃𝑎𝑣𝑔

′ >
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𝑃𝑟). Here 𝑃𝑎𝑣𝑔
′  is the average prize of the second stage. 𝛽𝑇2 > 0 captures the existence of disutility from 

underperforming relative to others in the second stage of two-stage contest. −𝜃𝑇(𝑒𝑖,2,𝑡 − 𝑒𝑖,1,𝑡)
2
 captures 

the contestants’ tendency to stick with previous decisions.19  If the contestant’s second-stage effort 𝑒𝑖,2,𝑡 

deviates from his first-stage effort 𝑒𝑖,1,𝑡 , he would incur a negative utility (𝜃𝑇 > 0 ). The higher the 

difference between the second-stage effort and the first-stage effort, the larger the disutility. 𝜃𝑇 > 0, thus, 

captures the degree of the aversion to deviating from previous decisions. The last component 𝑐(𝑒𝑖,2,𝑡) is the 

second-stage decision cost.  

Now, we show the contestant’s utility function in the first stage of the two-stage contest as follows: 

𝑈𝑖,1(𝑒𝑖,1,𝑡|𝛽𝑇) = 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃3) × {𝑃3 − 𝛽𝑇1(𝑃𝑎𝑣𝑔 − 𝑃3)}

+{1 − 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃3)} × {
𝑃1 + 𝑃2
2

− 𝑐(𝑒𝑖,2
∗ )} − 𝑐(𝑒𝑖,1,𝑡) (18)

 

𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃3) is the probability of being eliminated in the first stage. In that case, the contestant 

receives 𝑃3 and 𝛽𝑇1 > 0 captures the utility loss from not being shortlisted (i.e., losing). Here, the reference 

point is the average prize 𝑃𝑎𝑣𝑔 = 4. Next, 1 − 𝑃𝑟𝑜𝑏(𝑃𝑖,𝑡 = 𝑃3) refers to the chance of being shortlisted. 

𝑃1+𝑃2

2
− 𝑐(𝑒𝑖,2

∗ ) is the expected payoff (𝐸𝜋𝑖,2) that the contestant would get if he continues to participate in 

the second stage where  𝑒𝑖,2
∗  is the contestant’s second stage equilibrium. Lastly, 𝑐(𝑒𝑖,1,𝑡) is the first-stage 

cost.  

Solving the first order condition of equation (17) yields the second-stage equilibrium as: 

𝑒𝑖,2
∗ = 

(𝑃1 − 𝑃2 + 6𝜃𝑇𝑣𝑒𝑖,1 + 𝛽𝑇2(𝑃𝑎𝑣𝑔
′ − 𝑃2))

6(𝑘 + 𝜃𝑇)𝑣
(19) 

Plugging equation (19) into equation (18), the first order condition of equation (18) is as follows: 

𝐴𝑒𝑖,1
2 + 𝐵𝑒𝑖,1 + 𝐶 = 0 (20) 

where A, B, and C are: 

𝐴 = −
𝜃𝑇
2

4(𝑘 + 𝜃𝑇)
2𝑣
, 𝐵 = −1 −

(𝑃1 − 𝑃2)𝜃𝑇
12(𝑘 + 𝜃𝑇)

2𝑣2
−
(𝛽𝑇2(𝑃𝑎𝑣𝑔

′ − 𝑃2))𝜃𝑇

12(𝑘 + 𝜃𝑇)
2𝑣2

, 

 𝐶 = −
(𝛽𝑇2(𝑃𝑎𝑣𝑔

′ − 𝑃2))
2

144(𝑘 + 𝜃𝑇)
2𝑣3

−
𝛽𝑇2(𝑃𝑎𝑣𝑔

′ − 𝑃2)(𝑃1 − 𝑃2)

72(𝑘 + 𝜃𝑇)
2𝑣3

−
(𝑃1 − 𝑃2)

2

144(𝑘 + 𝜃𝑇)
2𝑣3

+
𝛽𝑇1(𝑃𝑎𝑣𝑔 − 𝑃3)

4𝑘𝑣

+
𝑃1 + 𝑃2 − 2𝑃3

8𝑘𝑣
 

The first-stage equilibrium will be the solution of equation (20). 20  Note that the behavioral 

 
19 The reason why we use squared deviation is to make the closed form solution of the optimal second-stage effort 𝑒𝑖,2

∗  be a 

function of 𝑒𝑖,1 so that we can link it with our behavioral theory (i.e., a function of previous first-stage effort). 
20 Though it is straightforward to infer the closed-form solution of the first-stage equilibrium, the functional form itself is rather 

complex to present. Thus, we skip reporting the closed-form solution here in the manuscript. 
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equilibrium nests the base model as a special case if 𝛽𝑇1 = 𝛽𝑇2 = 0 and 𝜃𝑇 = 0. 

5.3. Estimating the Behavioral Model 

We utilize the effort level decisions (𝑒𝑖) made by the contestants from the four treatments in our 

experiment to estimate the behavioral parameters in equations (16), (19) and the solutions to equation (20) 

via maximum likelihood method. Specifically, we assume that for one-stage contest 𝑒𝑖,𝑡,𝑇𝑅~ 𝑁(𝑒𝑇𝑅
∗ , 𝜎𝑇𝑅

2 ) 

and for two-stage contest 𝑒𝑖,𝑘,𝑡,𝑇𝑅~ 𝑁(𝑒𝑇𝑅,𝑘
∗ , 𝜎𝑇𝑅,𝑘

2 ), where 𝑖 represents contestant 𝑖, 𝑡 is the decision round, 

𝑇𝑅 indicates the four treatments, 𝑘 denotes stage 𝑘, 𝑒𝑇𝑅
∗  is the equilibrium effort of one-stage contest in 

treatment 𝑇𝑅, 𝜎𝑇𝑅
2  is the variance of one-stage contest in treatment 𝑇𝑅, 𝑒𝑇𝑅,𝑘

∗  is the equilibrium effort of 

stage 𝑘 in two-stage contest, 𝜎𝑇𝑅,𝑘
2  is the variance of stage 𝑘 in two-stage contest, and 𝑓(. ) is PDF of the 

Normal distribution. We have 4 treatments in total – One-High (OH) and One-Low (OL) for one-stage 

contest and Two-High (TH) and Two-Low (TL) for two-stage contest. In each treatment, there are 𝑁𝑇𝑅 

contestants who participate in 15 decision rounds. Therefore, the joint likelihood function is given by: 

𝐿(𝛽𝑂, 𝛽𝑇1, 𝛽𝑇2, 𝜃𝑇 , 𝜎𝑇𝑅 , 𝜎𝑇𝑅,𝑘) = ∏ ∏∏𝑓(𝑁(𝑒𝑇𝑅
∗ , 𝜎𝑇𝑅

2 ))

15

𝑡=1

𝑁𝑇𝑅

𝑖=1

{𝑂𝐻,𝑂𝐿}

𝑇𝑅

∏ ∏∏∏𝑓(𝑁(𝑒𝑇𝑅,𝑘
∗ , 𝜎𝑇𝑅,𝑘

2 ))

2

𝑘=1

15

𝑡=1

𝑁𝑇𝑅

𝑖=1

{𝑇𝐻,𝑇𝐿}

𝑇𝑅

   (21) 

5.4. Estimation results 

The parameter estimates of the behavioral model and nested models are shown in Table 7. As we 

will discuss, the parameter estimates confirm our behavioral model. We first examine the parameter 

estimates of our proposed behavioral model (see “Full model” shown in column (1) of Table 7). For one-

stage contest, 𝛽𝑂 = 0.227 is significantly different from zero (p<0.001), implying that contestants in one-

stage contest experience slight “behind aversion”. This is not surprising because the experimental results 

of one-stage contest are slightly higher than the base model predictions. 

For two-stage contest, 𝛽𝑇1 = 1.095  is positive and statistically different from zero (p<0.001), 

showing that the behavior of contestants is consistent with our behavioral model that incorporates 

psychological aversion to being left behind at the elimination stage. That is, contestants exhibit disutility 

when they are not shortlisted for the second stage. Therefore, they tend to exert higher effort in the first 

stage than the base model prediction. Note that the magnitude of 𝛽𝑇1 is much larger than 𝛽𝑂 (W=158.85, 

p<0.001), suggesting that contestants experience much more disutility from ranking 3rd in two-stage contest 

than ranking 3rd in one-stage contest. The reason is that being eliminated in two-stage contest is a more 

salient sign of losing compared with ranking 3rd in one-stage contest. We also note that, in the second stage 

of two-stage contest, contestants still exhibit aversion to falling behind (𝛽𝑇2 = 1.727, p<0.001). In addition, 

in the second stage, 𝜃𝑇 = 0.006  is positive and statistically significant (p<0.001), which suggests that 

contestants avoid deviating from their first-stage decisions. They tend to stick with their previous decisions. 

Behind aversion together with a tendency to stick with previous decisions, both motivate the contestant in 
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the second stage to exert much higher effort than what the base model predicts.  

Table 7. Estimates of the Behavioral Model and Comparison with Nested Models 

  (1) (2) (2) (3) (4) (5) 

  Full model Nested model 1 Nested model 2 Nested model 3 Nested model 4 Nested model 5 

 Parameter  (𝛽𝑇1 = 𝛽𝑇2) (𝛽𝑂 = 𝛽𝑇1 = 𝛽𝑇2) (𝜷 = 0) (𝜃𝑇 = 0) (𝜷 = 𝜃𝑇 = 0) 

One-stage 

contest 

𝛽𝑂 0.227*** 0.227*** 0.758***  0.227***  

 (0.052) (0.052) (0.034)  (0.052)  

𝜎𝑂𝐻 12.088*** 12.088*** 13.212*** 11.838*** 12.088*** 11.838*** 

 (0.361) (0.361) (0.398) (0.346) (0.361) (0.346) 

𝜎𝑂𝐿 9.438*** 9.438*** 9.427*** 9.766*** 9.438*** 9.766*** 

 (0.271) (0.271) (0.268) (0.275) (0.271) (0.275) 

Two-stage 

contest 

𝛽𝑇1 1.095*** 1.113***   0.968***  

 (0.045) (0.045)   (0.045)  

𝛽𝑇2 1.727***    0.849***  

 (0.224)    (0.067)  

𝜃𝑇 0.006*** 0.005*** 0.005*** 0.006*   

 (0.001) (0.001) (0.001) (0.003)   

𝜎𝑇𝐻,1 9.658*** 9.569*** 9.808*** 10.946*** 9.957*** 11.399*** 

 (0.277) (0.271) (0.280) (0.315) (0.293) (0.321) 

𝜎𝑇𝐻,2 9.933*** 10.128*** 10.636*** 12.685*** 9.843*** 11.320*** 

 (0.348) (0.358) (0.386) (0.504) (0.340) (0.391) 

𝜎𝑇𝐿,1 7.220*** 7.273*** 7.172*** 8.369*** 7.336*** 8.172*** 

 (0.206) (0.209) (0.202) (0.240) (0.214) (0.230) 

𝜎𝑇𝐿,2 8.216*** 8.189*** 8.302*** 9.074*** 9.348*** 10.276*** 

 (0.285) (0.283) (0.292) (0.357) (0.329) (0.355) 

Log likelihood  -12098.9 -12104.4 -12188.8 -12424.6 -12178.5 -12439.5 

LR test   11.02*** 179.84*** 651.26*** 159.14*** 681.12*** 

Notes: 𝜷 refers to 𝛽𝑂 , 𝛽𝑇1 and 𝛽𝑇2. For each nested model, LR test was conducted against the full model. Standard errors are 

shown in parentheses. *p<0.05; **p<0.01; ***p<0.001. 

The other columns of Table 7 display the fit of various nested models. The results of the likelihood-

ratio (LR) tests indicate that the full model with all behavioral parameters produces the best fit. Nested 

Model 1 set the behind aversion parameter 𝛽 to be the same in two-stage contest (𝛽𝑇1 = 𝛽𝑇2), which is 

rejected (p<0.001). Nested model 2 sets parameters 𝛽 to be the same across the two contest structures (𝛽𝑂 =

𝛽𝑇1 = 𝛽𝑇2). The model is rejected (p<0.001), suggesting that the psychological aversion to falling behind 

the competition are different for different contest structures. Nested model 3 imposes the restriction of not 

having behind aversion parameters (𝛽𝑂 = 𝛽𝑇1 = 𝛽𝑇2 = 0). This model is rejected (p<0.001), indicating 

that incorporating behind aversion factors in the model is necessary. Nested model 4 does not include any 

bias towards previous decisions (𝜃𝑇 = 0) and again is rejected (p<0.001), suggesting that this psychological 

factor is also essential in the model. Lastly, nested model 5 is our base model without any behavioral 

parameters (𝛽𝑂 = 𝛽𝑇 = 𝜃𝑇 = 0). The LR test rejects this nested model as well (p<0.001), clearly showing 

that the full model performs significantly better. 

In sum, our behavioral model confirms the following findings: Contestants in one-stage contest 

exhibit slight behind aversion. For two-stage contest where the first stage is the elimination stage, 
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contestants are much more averse to being eliminated and the magnitude of behind aversion in two-stage 

contest is more than 4.8 times larger than that in one-stage contest. Moreover, in the second stage of two-

stage contest, shortlisted contestants display continuous exertion of efforts in addition to behind aversion. 

They tend to stick with their first-stage decisions and continue to exert higher efforts than the base model 

predictions in the second stage. Overall, our behavioral model incorporating psychological aversion to 

falling behind and continuous exertion of efforts can better explain the empirical regularities in our 

experiments. 

5.5. Alternative Explanations 

Although our behavioral model in Section 5.1 and Section 5.2 fits the experiment results well, there 

could be other alternative behavioral explanations for our results. We briefly discuss some of those potential 

alternatives here and share their similarity as well as difference from our context. First, instead of “behind 

aversion” utilized in our behavioral model, “last-place aversion” could be another potential behavioral 

factor in explaining our results. Contestants might be averse to being ranked in the “last place” (Kuziemko 

et al. 2014, Buell 2021). Kuziemko et al. (2014) demonstrate that individuals are averse to being in the “last 

place” such that if customers are waiting in the last place of a queue, they are more likely to switch or even 

abandon the queue (Buell 2021). Although the concept of “last-place aversion” seems similar to “behind 

aversion” in that people are averse to being in the last rank, “last-place aversion” occurs when people first 

realize their rank (i.e., last place) and then subsequently choose an action (Bull et al. 1987, Kuziemko et al. 

2014). However, in our context, participants first choose an action before realizing their rank. 

Second, one may consider that the continuous exertion of effort might be due to “anchoring bias” 

which explains phenomena that people’s judgments and decisions are influenced by an initially presented 

value or reference point (Tversky and Kahneman 1974). For example, initially marketed price is often taken 

as an anchor by buyers. In this case, the buyers often perceive negotiated price as fair when the initial price 

is high, even if the negotiated price is more than the product’s true market worth (Northcraft and Neale 

1987). Although our second-stage effort is affected by the first-stage effort, the first-stage effort is a decision 

made by contestants themselves while anchors are often exogenous information given to the subjects.  

Third, another alternative explanation for higher efforts in two-stage contest would be mental 

accounting. Mental accounting explains the tendency that people psychologically compartmentalize their 

spending of money into multiple mental accounts based on subjective criteria (i.e., purpose of spending) 

(Thaler 1999). Similarly, participants in our two-stage contest may just treat the two stages separately as 

two independent games. To test this, we compared decisions between one-stage and the separate stages of 

the two-stage treatment. If contestants treat the two stages as two separate one-stage contests, we would 

observe that they are not significantly different from each other. We report the statistical tests of this in 

Table D of Appendix D, which are not in line with this conjecture.  
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Lastly, another similar phenomenon to our findings is the “winner’s curse” in auction design, where 

the winning bidder often overbids the product (Thaler 1988). Although participants overinvest both in our 

two-stage experiment and in auction design, we do not find strong evidence that contestants overinvest and 

diverge from the base model predictions in the case of one-stage contest.  

As we briefly discussed, while several potential alternative explanations may exist, our behavioral 

model including behind aversion and continuous exertion of efforts is suitable in explaining behaviors in 

data science competitions largely due to the following observations: (1) contestants first spend an effort and 

then realize the rank; (2) the first-stage effort is not exogenous information; (3) contestants’ behaviors in 

the two stages of two-stage contest are different; (4)  contestants are less likely to overinvest in one-stage 

contest. Extending this point forward, further studies systematically investigating other potential behavioral 

factors behind contestants’ behaviors would be helpful in enriching our understanding. 

6. Validation Experiments 

To further demonstrate the robustness of our results, we conduct three additional experiments as 

follows. In Experiment 2, we incorporate the risk preference of contestants and use a completely new set 

of parameters to test whether our experimental results are robust and whether our findings are not specific 

to a certain choice of parameters. The detailed experimental design and results are reported in Appendix 

E.1. We show that the risk-preference model cannot explain the observed behaviors. Moreover, our findings 

are robust to different model parameters. In Experiment 3, we vary the number of participants in a contest 

and confirm that our findings remain robust although the number of participants increases. Given the 

openness of the contest, it is important to test whether our main experimental results and behavioral model 

can be applied to the contests with more participants. We also test whether our estimated behavioral model 

(Section 5.4) can capture the true psychological drivers of contestants and whether it can explain contestants’ 

behaviors under different experimental parameters (both in Experiment 2 and 3). If our proposed behavioral 

model is robust, it should be able to predict contestants’ behaviors under other experimental parameters as 

well. We confirm and report these details in Appendix E.2. Lastly, as mentioned earlier, one downside of 

our experimental approach could be from a gap between an abstract model and the field environment where 

real efforts are invested. In Experiment 4, we utilized the real-effort task (Gill and Prowse 2012) and also 

varied the prize structure by allowing 𝑃3 = 0 to better mimic real-world scenarios. The experimental results 

are in line with our main experiment. Details can be found in Appendix E.3. 

7. Conclusion  

This paper examines a critical question that every contest organizer faces when they design an open 

competition especially for data science competitions (e.g., machine learning or big data contests on Kaggle): 

What is a better contest structure to motivate contestants to exert more effort and, as a result, to achieve a 
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better solution? More specifically, should the contest have multiple stages and which prize structure should 

be adopted? To answer these questions, we utilize an incentive-aligned experiment which allows us to 

observe the effort provision from contestants whereas we cannot do so in the field. Our experiment 

manipulates two types of contest design: (1) the number of stages (contest structure) and (2) the distribution 

of prizes (prize structure). Contrary to the base model prediction, our experimental results show that 

contestants significantly boosted their effort in the two-stage contests. Furthermore, we found that 

contestants provide higher level of effort when the winner takes most of the prizes in the two-stage contest. 

To explain the empirical anomalies observed in our experiment, we developed a behavioral model that 

captures contestants’ psychological aversion to falling behind and tendency to stick with previous decisions. 

In the first stage of two-stage contest, contestants are averse to being eliminated and, thus, they over-exert 

their effort. In the second stage, contestants stick with their previous decision and keep investing higher 

effort in the second stage. 

Our findings provide several policy implications by demonstrating that it is crucial for contest 

holders to be aware that contestants’ decisions can be influenced by non-pecuniary factors. First of all, an 

immediate policy implication is that contest organizers should adopt a multi-stage contest by providing 

partial data in the first stage (and full data in the second stage) whenever possible, which can motivate 

contestants to invest more effort. Next, having multiple stages in a contest significantly boosts the effort 

provision by contestants because no one wants to be perceived as a “loser” by being eliminated early. 

Utilizing this, the contest organizers may make “losing” in the elimination stage more salient (e.g., 

announcing the contest results publicly), which may lead to even higher effort provision from contestants 

by strengthening contestants’ psychological aversion to falling behind. Furthermore, if the contestants 

already invested a considerable amount of effort in their elimination stage, they would continue to invest 

high effort in the following stage. This suggests that the first-stage problem in the contest should be 

considered challenging from the perspective of contestants. 

Because our paper is one of the few studies that have considered the contest design of data science 

competitions, it is not without limitations and we discuss several ways to extend our work. First, in a certain 

industry, firms sometimes adopt more than two stages (e.g., three-stage or even more stages) in competition. 

It is therefore worthwhile to empirically examine how contestants’ behavior changes as the number of 

elimination stages increases. Will it motivate the contestants more or demotivate them? Will there be any 

optimal number of stages? Second, this paper hints that contestants' behaviors are influenced by two factors: 

psychological aversion to falling behind and a tendency to adhere to previous decisions. Extending this to 

an individual level, the underlying mechanism of contestants with the increased effort caused by stage split 

and that of those without could be further investigated. Third, in the real world, contestants’ abilities are not 

homogenous. Our model has a room to be further extended to allow for heterogeneous contestants. That is, 
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what will happen if contestants know that there is a superstar contestant participating in a competition? 

How would the distribution of ability among contestants have an impact on the effort provision? Fourth, in 

some open-source competitions, there is a case where the solution of the first-stage winner is disclosed to 

the public before starting the second stage. It would be interesting to study how contestants will strategically 

respond in this case. Lastly, as previously discussed, lack of real-world data science context (due to the 

abstraction in our experiments) could question whether our findings can be applied in the real-life data 

science competitions. Thus, further investigation and verification of our results in the field would be an 

important next step. 
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